Правила решений дробей

Вычитание обыкновенных дробей: правила, примеры, решения.

Продолжаем изучать действия с обыкновенными дробями. Здесь мы разберемся, как проводится вычитание обыкновенных дробей. Сначала получим правило вычитания дробей с одинаковыми знаменателями. Дальше рассмотрим вычитание дробей с разными знаменателями и приведем примеры вычитания с подробными решениями. После этого остановимся на вычитании дроби из натурального числа и вычитании числа из дроби. В заключение покажем, как проводится вычитание обыкновенных дробей с использованием свойств этого действия.

Сразу заметим, что в этой статье мы будем говорить лишь о вычитании меньшей дроби из большей дроби. Другие случаи разобраны в статье вычитание рациональных чисел.

Навигация по странице.

Вычитание дробей с одинаковыми знаменателями

Для начала приведем пример, который позволит нам выяснить, как проводится вычитание дробей с одинаковыми знаменателями.

Пусть на тарелке находилось пять восьмых долей яблока, то есть, 5/8 яблока, после чего две восьмых доли забрали. По смыслу вычитания (смотрите общее представление о вычитании), указанное действие описывается так: . Понятно, что при этом на тарелке остается 5−2=3 восьмых доли яблока. То есть, .

Рассмотренный пример иллюстрирует правило вычитания дробей с одинаковыми знаменателями: при вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитается числитель вычитаемого, а знаменатель остается прежним.

Озвученное правило с помощью букв записывается так: . Эту формулу и будем использовать при вычитании дробей с одинаковыми знаменателями.

Рассмотрим примеры вычитания дробей с одинаковыми знаменателями.

Выполните вычитание обыкновенной дроби 17/15 из обыкновенной дроби 24/15 .

Знаменатели вычитаемых дробей равны. Числитель уменьшаемого равен 24 , а числитель вычитаемого равен 17 , их разность равна 7 ( 24−17=7 при необходимости смотрите вычитание натуральных чисел). Поэтому вычитание дробей с одинаковыми знаменателями 24/15 и 17/15 дает дробь 7/15 .

Краткий вариант решения выглядит так: .

.

При возможности нужно проводить сокращение дроби и (или) выделение целой части из неправильной дроби, которая получается при вычитании дробей с одинаковыми знаменателями.

Вычислите разность .

Воспользуемся формулой вычитания дробей с одинаковыми знаменателями: .

Очевидно, числитель и знаменатель полученной дроби делятся на 2 (смотрите признак делимости на 2), то есть, 22/12 – сократимая дробь. Выполнив сокращение этой дроби на 2 , приходим к дроби 11/6 .

Дробь 11/6 – неправильная (смотрите правильные и неправильные дроби). Поэтому из нее нужно выделить целую часть: .

Итак, вычисляемая разность дробей с одинаковыми знаменателями равна .

Вот все решение: .

.

Вычитание дробей с разными знаменателями

Вычитание дробей с разными знаменателями сводится к вычитанию дробей с одинаковыми знаменателями. Для этого дроби с разными знаменателями достаточно привести к общему знаменателю.

Итак, чтобы провести вычитание дробей с разными знаменателями, надо:

  • привести дроби к общему знаменателю (обычно дроби приводят к наименьшему общему знаменателю);
  • вычесть полученные дроби с одинаковыми знаменателями.
  • Рассмотрим примеры вычитания дробей с разными знаменателями.

    Отнимите от обыкновенной дроби 2/9 обыкновенную дробь 1/15 .

    Так как знаменатели вычитаемых дробей разные, то сначала выполним приведение дробей к наименьшему общему знаменателю: так как НОК(9, 15)=45 , то дополнительным множителем дроби 2/9 является число 45:9=5 , а дополнительным множителем дроби 1/15 является число 45:15=3 , тогда и .

    Осталось вычесть из дроби 10/45 дробь 3/45 , получаем , что и дает нам искомую разность дробей с разными знаменателями.

    Кратко решение записывается так: .

    .

    Не следует забывать про сокращение полученной после вычитания дроби, а также про выделение целой части.

    Вычтите из дроби 19/9 дробь 7/36 .

    После приведения дробей с разными знаменателями к наименьшему общему знаменателю 36 , имеем дроби 76/9 и 7/36 . Вычисляем их разность: .

    Полученная дробь сократима, после ее сокращения на 3 , получаем 23/12 . А эта дробь неправильная, выделив из нее целую часть, имеем .

    Соберем воедино все выполненные действия при вычитании исходных дробей с разными знаменателями: .

    .

    Вычитание натурального числа из обыкновенной дроби

    Вычитание натурального числа из дроби можно свести к вычитанию обыкновенных дробей. Для этого достаточно представить натуральное число в виде дроби со знаменателем 1. Разберем решение примера.

    Выполните вычитание числа 3 из дроби 83/21 .

    Так как число 3 равно дроби 3/1 , то .

    .

    Однако вычитание натурального числа из неправильной дроби удобнее проводить, представив дробь в виде смешанного числа. Покажем решение предыдущего примера этим способом.

    Отнимите число 3 от дроби 83/21 .

    Сначала выделим целую часть из неправильной дроби 83/21 , имеем , тогда . Осталось провести вычитание натурального числа из смешанного числа: .

    .

    Вычитание обыкновенной дроби из натурального числа

    Вычитание обыкновенной дроби из натурального числа можно свести к вычитанию обыкновенных дробей, представив натуральное число как дробь. Разберем решение примера, иллюстрирующего такой подход.

    Отнимите обыкновенную дробь 5/3 от натурального числа 7 .

    Представим число 7 как дробь 7/1 , после чего выполним вычитание: .

    Выделив целую часть из полученной дроби, получаем окончательный ответ .

    .

    Однако существует более рациональный способ вычитания дроби из натурального числа. Его преимущества особенно заметны, когда уменьшаемое натуральное число и знаменатель вычитаемой дроби являются большими числами. Все это будет видно из примеров ниже.

    Если вычитаемая дробь правильная, то уменьшаемое натуральное число можно заменить суммой двух чисел, одно из которых равно единице, отнять правильную дробь от единицы, после чего завершить вычисления.

    Выполните вычитание обыкновенной дроби 13/62 из натурального числа 1 065 .

    Вычитаемая обыкновенная дробь – правильная. Заменим число 1 065 суммой 1 064+1 , при этом получим . Осталось вычислить значение полученного выражения (подробнее о вычислении таких выражений мы поговорим в следующем пункте).

    В силу свойств вычитания, полученное выражение можно переписать как . Вычислим значение разности в скобках, заменив единицу дробью 1/1 , имеем . Таким образом, . На этом вычитание дроби 13/62 из натурального числа 1 065 завершено.

    Вот все решение:

    А теперь для сравнения покажем, с какими числами нам бы пришлось работать, если бы мы решили свести вычитание исходных чисел к вычитанию дробей:

    .

    Если же вычитаемая дробь неправильная, то ее можно заменить смешанным числом, после чего провести вычитание смешанного числа из натурального числа.

    Отнимите от натурального числа 644 дробь 73/5 .

    Выделим целую часть из неправильной дроби: . Тогда .

    Осталось лишь выполнить вычитание правильной дроби из натурального числа, поступим также как в предыдущем примере: .

    .

    Использование свойств вычитания при вычитании дробей

    Для вычитания обыкновенных дробей справедливы все свойства вычитания натуральных чисел. Это следует из смысла, который мы придали обыкновенным дробям и операции вычитания дробей. Свойства вычитания позволяют вычислять значения выражений с дробями. Рассмотрим примеры.

    Вычислите значение выражения .

    Решения подобных примеров с натуральными числами разобраны в разделе вычитание суммы из числа. Здесь будем действовать аналогично.

    Сначала вычислим разность , после чего от нее отнимем дробь 5/6 . Итак, и . После выделения целой части из полученной неправильной дроби получаем .

    Так выглядит краткая запись решения: .

    .

    Когда выражение содержит и натуральные числа и дроби, то при вычислении удобно группировать числа с числами, а дроби с дробями.

    Выполните вычитание суммы натурального числа и обыкновенной дроби из суммы натурального числа и обыкновенной дроби .

    Нам нужно вычислить разность . Свойства сложения и вычитания позволяют нам провести следующую группировку , что упрощает вычисления. Осталось лишь закончить вычисления: .

    .

    www.cleverstudents.ru

    Как решать дроби. Решение дробей.

    В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей!

    Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

    Дроби имеют вид : ±X/Y, где Y — знаменатель, он сообщает на сколько частей разделили целое, а X — числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

    В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

    Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

    Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

    Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

    Если числитель меньше знаменателя — дробь является правильной, если наоборот — неправильной. В состав дроби может входить целое число.

    Например, 5 целых 3/4.

    Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

    Если вы хотите запомнить, как решать дроби за 6 класс, вам надо понять, что решение дробей, в основном, сводится к понимаю нескольких простых вещей.

    • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого — три.
    • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
    • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

    Как решать дроби. Примеры.

    К дробям применимы самые разные арифметические операции.

    Приведение дроби к общему знаменателю

    Например, необходимо сравнить дроби 3/4 и 4/5.

    Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

    Наименьший общий знаменатель(4,5) = 20

    Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

    Ответ: 15/20 Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

    Должна признаться, что решать дроби — это мое самое любимое математическое действие. Это тема, которую я понимаю без вопросов. Можно сказать, хлебом не корми, дай только дроби порешать )))

    Дроби я тоже люблю. Умножать и делить их — милое дело. Вообще мне кажется, что с решением дробей мало у кого могут быть проблемы, потому что все довольно просто. Есть в математике огромное количество гораздо более сложных вещей, чем дроби решать.

    Я вообще не умею решать дроби, но понятие немного есть. И поэтому стараюсь как можно скорее научиться решать дроби как дважды два четыре. Мне легче с формулами сложные примеры решить чем решать дроби!

    Полезно бывает вспомнить то, что проходилось в школе когда-то и частично забыто. Да и я лично для себя несколько моментов новых открыл и очень рад. Правда появился еще вопрос по поводу того, изменилось ли что-то в данном случае или же нет? Потому что я не все помню и есть четкое мнение, что изменились уравнения уже.

    Всегда любила я дробить числа. А тут оказывается и вообще проще простого все это сделать можно, имея просто одно целое значение, которое не настолько и сложно просто поделить на частички, которые и будут нужны.

    Вроде бы все просто, а вот на примере с вычитанием 1/4 я расстерялся. Вот такие преобразования дроби для вычитания меня сбивают с толку.

    Так это еще слишком простые дроби здесь на примерах представлены. Я как заглянула в экзаменационные задания чуть не померла, сама такое не решу никогда.

    Вы видео смотрели?! Мне лично очень понравилось, доступно, подробно, но кратко. Таким и должны быть математические видео-уроки.

    Согласен, видео хорошее, а вообще решение дробей не самое сложное в математике!

    Вот честно говоря, если бы я не знала что такое дроби и как решить с ними примеры, посмотрев видео,я бы не поняла что к чему.
    (Знаю что и как решать,просто хотела вспомнить)

    reshit.ru

    Деление дробей. Правила. Примеры.

    Следующее действие, которое можно выполнять с дробями это деление. Выполнять деление дробей достаточно просто главное знать несколько правил деления. Разберем правила деления и рассмотрим решение примеров на данную тему.

    Деление дроби на дробь.

    Чтобы делить дробь на дробь, нужно дробь, которая является делителем перевернуть, то есть получить обратную дробь делителю и потом выполнить умножение дробей.

    Выполните деление обыкновенных дробей .

    Деление дроби на число.

    Чтобы разделить дробь на число, нужно знаменатель дроби умножить на число.

    Выполните деления дроби на натуральное число \(\frac<4> <7>\div 3\).

    Как мы уже знаем, что любое число можно представить в виде дроби \(3 = \frac<3> <1>\).

    Деление числа на дробь.

    Чтобы поделить число на дробь, нужно знаменатель делителя умножить на число, а числитель делителя записать в знаменатель. То есть дробь делитель перевернуть.

    Выполните деление числа на дробь.

    Деление смешанных дробей.

    Перед тем как приступить к делению смешанных дробей, их нужно перевести в неправильную дробь, а дальше выполнить деление по правилу деления дроби на дробь.

    Выполните деление смешанных дробей.

    Деление числа на число.

    Чтобы поделить простые числа, нужно представить их в виде дроби и выполнить деление по правилам деления дроби на дробь.

    Примечание к теме деление дробей:
    На нуль делить нельзя.

    Вопросы по теме:
    Как делить дроби? Как разделить дробь на дробь?
    Ответ: дроби делятся так, первую дробь делимое умножаем на дробь обратную дроби делителя.

    Как делить дроби с разными знаменателями?
    Ответ: не важно одинаковые или разные знаменатели у дробей, все дроби делятся по правилу деления дроби на дробь.

    Пример №1:
    Выполните деление и назовите делитель, дробь, обратную делителю: а) \(\frac<5> <9>\div \frac<8><13>\) б) \(2\frac<4> <5>\div 1\frac<7><8>\)

    \( \frac<8><13>\) – делитель, \( \frac<13><8>\) – обратная дробь делителя.

    \( \frac<15><8>\) – делитель, \( \frac<8><15>\) – обратная дробь делителя.

    Пример №2:
    Вычислите деление: а) \(5 \div 1\frac<1><4>\) б) \(9\frac<2> <3>\div 8\)

    tutomath.ru

    Сложные выражения с дробями. Порядок действий

    Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

    В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  • Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  • Затем — деление и умножение;
  • Последним шагом выполняется сложение и вычитание.
  • Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

    Переведем все дроби из первого выражения в неправильные, а затем выполним действия:

    Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

    Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

    Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

    Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

    Многоэтажные дроби

    До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

    Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

    Здесь и далее мы будем называть эти дроби многоэтажными . Однако имейте в виду, что общепризнанного названия у них нет, и в разных учебниках могут встречаться другие определения.

    Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

    Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

    Задача. Переведите многоэтажные дроби в обычные:

    В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

    В последнем примере перед окончательным умножением дроби были сокращены.

    Специфика работы с многоэтажными дробями

    В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

    Это выражение можно прочитать по-разному:

    1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
    2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

    Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

    Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

    Если следовать этому правилу, то приведенные выше дроби надо записать так:

    Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

    Задача. Найдите значения выражений:

    Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

    Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:

    Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

    Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

    Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

    www.berdov.com

    Действия с дробями

    Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь список материалов и изучать последовательно.

    1. Сумма дробей, разность дробей.

    Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

    Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

    Формальная запись суммы и разности дробей с равными знаменателями:

    Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

    Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

    Вариант 2 – можно отдельно «работать» с целой и дробной частью.

    А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

    *Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.

    *Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

    Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

    Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

    Рассмотрим простые примеры:

    В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

    Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ.

    То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразования.

    Посмотрите на эти примеры:

    К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

    Способ ВТОРОЙ.

    Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

    *Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

    Видим, что числитель и знаменатель делится на 5:

    Способ ТРЕТИЙ.

    Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

    Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

    Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

    Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

    — разложить каждое из чисел на ПРОСТЫЕ множители

    — выписать разложение БОЛЬШЕГО из них

    — умножить его на НЕДОСТАЮЩИЕ множители других чисел

    50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

    в разложении большего числа не хватает одной пятёрки

    => НОК(50,60) = 2∙2∙3∙5∙5 = 300

    48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

    в разложении большего числа не хватает двойки и тройки

    => НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

    * Наименьшее общее кратное двух простых чисел равно их произведению

    Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

    *51 = 3∙17 119 = 7∙17

    в разложении большего числа не хватает тройки

    А теперь применим первый способ:

    *Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

    *Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

    ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

    — приводим дроби к обыкновенным, если есть целая часть.

    — приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

    — получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

    — если необходимо, то результат сокращаем.

    — если необходимо, то выделяем целую часть.

    2. Произведение дробей.

    Правило простое. При умножении дробей умножаются их числители и знаменатели:

    Если есть возможность сократить дробь на стадии вычисления, то лучше это сделать:

    Ещё правило относящееся к умножению!

    Примеры, которые мы уже рассмотрели:

    Определить, сколько составляет 3/7 от числа 63?

    Задача. Весь путь составляет 180 километров. Турист в первый день прошёл 3/10 пути. Сколько километров турист прошёл в первый день?

    Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм картофеля завезли на базу?

    С произведением закончим.

    *Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

    3. Деление дробей.

    Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

    Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

    matematikalegko.ru