Бактерии состояние споры

Бактерии, характеристика и значение для человека

Бактерии — очень мелкие живые организмы. Их можно видеть только под микроскопом с очень сильным увеличением. Все бактерии одноклеточные. Внутреннее строение клетки бактерий не похоже на клетки растений и животных. У них нет ни ядра, ни пластид. Ядерное вещество и пигменты имеются, но в «распыленном» состоянии. Форма разнообразна.

Клетка бактерии одета особой плотной оболочкой – клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи – капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула – не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота – ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий. Споры – не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий – это приспособление к выживанию в неблагоприятных условиях. Споры у бактерий служат для перенесения неблагоприятных условий. Они образуются из внутренней части содержимого клетки. При этом вокруг споры формируется новая, более плотная оболочка. Споры могут переносить очень низкие температуры (до — 273 °С) и очень высокие. Споры не погибают при кипячении воды.

Многие бактерии имеют хлорофилл и другие пигменты. Они осуществляют фотосинтез, подобно растениям (цианобактерии, пурпурные бактерии). Другие бактерии получают энергию из неорганических веществ — серы, соединений железа и других, но источник углерода, как и при фотосинтезе, — углекислый газ.

Большинство бактерий способны использовать готовые органические соединения. Одни из них используют мертвый органический материал (это сапротрофы, или сапробионты). Другие питаются органическими веществами живых организмов (паразиты, вызывающие болезни).

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее. После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес – 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Роль бактерий в природе. Распространение и экология

Бактерии распространены повсеместно: в водоемах, воздухе, почве. В воздухе их меньше всего (но не в местах скопления людей). В водах рек их может быть до 400 000 в 1 см 3 , а в почве — до 1 000 000 000 в 1 г. Бактерии по-разному относятся к кислороду: для одних он необходим, для других губителен. Для большинства бактерий наиболее благоприятны температуры между +4 и +40 °С. Прямой солнечный свет вызывает гибель многих бактерий.

Встречаясь в огромном количестве (число их видов достигает 2500), бактерии играют исключительно важную роль во многих природных процессах. Вместе с грибами и почвенными беспозвоночными животными они участвуют в процессах разложения растительных остатков (опадающие листья, ветки и т.п.) до перегноя. Деятельность сапрофитных бактерий приводит к образованию минеральных солей, которые усваиваются корнями растений. Клубеньковые бактерии, живущие в тканях корней мотыльковых, а также некоторые свободноживущие бактерии обладают замечательной способностью усваивать атмосферный азот, недоступный для растений. Таким образом, бактерии участвуют в круговороте веществ в природе.

Микрофлора почвы. Количество бактерий в почве чрезвычайно велико – сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв. На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков. Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора – один из факторов образования почв. Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов. Вода – природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается. Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая – 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные. По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха. Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека.
Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками – прекрасная среда для развития микроорганизмов. Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре. Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Значение бактерий в жизни человека

Большое значение имеют процессы брожения; так называют в основном разложение углеводов. Так, в результате брожения молоко превращается в кефир и другие продукты; силосование кормов — тоже брожение. Брожение происходит и в кишечнике человека. Без соответствующих бактерий (например, кишечной палочки) кишечник нормально не может функционировать. Гниение, полезное в природе, крайне нежелательно в быту (например, порча мясных продуктов). Не всегда полезно и брожение (например, скисание молока). Чтобы продукты не портились, их солят, сушат, консервируют, держат в холодильниках. Таким образом снижают деятельность бактерий.

Патогенными называются бактерии, паразитирующие на других организмах. Бактерии вызывают большое количество заболеваний человека, таких как чума (Yersinia pestis), сибирская язва (Bacillus anthracis), лепра (проказа, возбудитель: Mycobacterium leprae), дифтерия (Corynebacterium diphtheriae), сифилис (Treponema pallidum), холера (Vibrio cholerae), туберкулёз (Mycobacterium tuberculosis), листериоз (Listeria monocytogenes) и др. Открытие патогенных свойств у бактерий продолжается: в 1976 обнаружена болезнь легионеров, вызываемая Legionella pneumophila, в 1980-е—1990-е было показано, что Helicobacter pylori вызывает язвенную болезнь и даже рак желудка, а также хронический гастрит. Бактериальным инфекциям подвержены также растения и животные. Многие бактерии, являющиеся в норме безопасными для человека или даже обычными обитателями его кожи или кишечника, в случае нарушения иммунитета или общего ослабления организма могут выступать в качестве патогенов. Многие патогенные бактерии образуют скопление в организме в виде биоплёнок, скреплённых и защищённых слизью, что делает их недоступными для проникновения антибиотиков.Опасность бактериальных заболеваний была сильно снижена в конце XIX века с изобретением метода вакцинации, а в середине XX века с открытием антибиотиков.

biofile.ru

Споры бактерий шпионят друг за другом

Споры бактерий пробуждают рецепторы к стройматериалу стенок их собратьев

В тяжёлые времена бактерии «впадают в спячку», превращаясь в споры. Как выяснили учёные, будит их не изменение условий, а активность собратьев. Похожий трюк использует и наша собственная иммунная система.

Большинство людей, прежде чем выйти из дома, смотрит на улицу. Кто-то, может быть, проверяет, не настал ли конец света, ну а большинство навскидку оценивают температуру и осадки. И лучший способ сделать это – посмотреть на экипировку себе подобных.

А теперь представьте, как себя чувствует одноклеточная бактерия, самостоятельно замуровавшая себя в «споре-домике». Для неё, в отличие от нас, любая попытка «подсмотреть, что там снаружи происходит», в случае неблагоприятных условий фатальна.

Оказывается, за отсутствием стекол и окон прокариоты, а точнее, некоторые из них, научились использовать своеобразные «зонды», определяя активность других бактерий в окружающей среде.

Естественную гибель клеток от насильственной отличает рецептор Mincle

Умение образовывать споры с толстыми стенками и минимальной интенсивностью обмена веществ позволяет бактериям переживать неблагоприятные времена и мигрировать на расстояния, недоступные большинству живых существ. Факторы, запускающие процесс самозамуровывания, были известны и до сегодняшнего дня: высокая или, наоборот, чересчур низкая температура, нехватка пищи или соленый раствор.

Теоретически, те же самые изменения в окружающей среде, но с противоположным знаком, должны стимулировать и обратные процессы. Но тут встает вопрос:

как бактерия узнает о происходящем за пределами толстой стенки, созданной природой специально для изоляции?

Джонатан Дворкин и его коллеги из Университета Колумбии заметили, что споры сенной палочки Bacillus subtilis выходят из спящего состояния, если в среду поместить другие, активно функционирующие бактерии. Дальше в ход пошла дедукция, подкрепленная знаниями о строении клеточной стенки и особенностями размножения.

Туберкулёз убивает фагоциты незаметно для остальной иммунной системы

Дело в том, что на поверхности спор даже в самые суровые времена сохраняются рецепторы, активирующиеся при наличии в окружающей среде компонентов клеточной стенки – пептидогликанов, высвобождающихся в ходе деления или перестройки клеточной стенки. Как показал дополнительный эксперимент, для этого достаточно даже муропептидов – коротких цепочек аминокислот, из которых и состоит упомянутый пептидогликан.

Безусловно, эти эксперименты не исключают наличия у бактерий другой системы «прогноза погоды», но Дворкин предполагает, что муропептиды в жизни B.subtilis играют всё-таки ключевую роль.

Во-первых, в их отсутствии никакими «плюшками» выманить бактерию из споры не удавалось. А во-вторых, при добавлении в среду стауроспорина – ингибитора вышеописанных рецепторов — вылупление сразу же прекращалось. За счет того, что стауроспорин немного похож на муропептиды, его молекула вроде бы и связывается с рецепторами, не давая прилепиться к ним муропептидам, но так как структура совпадает не полностью, активации внутриклеточных каскадов при этом не происходит.

Так что теперь у ученых есть инструмент, отлично дополняющий действие антибиотиков, которые в большинстве своем уничтожают лишь активные, а зачастую даже только делящиеся клетки.

Нервная система может регулировать врождённый иммунитет, и бактерии этим пользуются

Примечательно, что тот же самый сигнальный путь есть и у ядерных организмов, но используется он уже с другой целью. Клетки нашей иммунной системы обладают рецепторами к протеогликанам бактериальной клеточной стенки, что позволяет им очень быстро узнавать о начале бактериальной атаки.

Схожи не только рецепторы, но даже внутриклеточные сигнальные пути, и это притом, что ядерный аппарат прокариот построен совершенно иначе. Так что природа в очередной раз продемонстрировала свое превосходство над учеными, намекнув им, что искать ответы можно в своем собственном организме.

Те же, кто не хочет ждать появления нового лекарства в аптеке, могут самостоятельно приступить к фармпроизводству с помощью статьи, опубликованной в Cell.

m.gazeta.ru

Споры и спорообразование

Раздел — Микробиология

Споры (эндоспоры) бактерий — особый тип покоящихся репродуктивных клеток, характеризующихся резко сниженным уровнем метаболизма и высокой резистентностью.

Бактериальная спора формируется внутри материнской клетки и называется эндоспорой. Способностью к образованию спор обладают преимущественно палочковидные грамположительные бактерии родов Bacillus и Clostridium, из шаровидных бактерий лишь единичные виды, например Sporosarcina ureae. Как правило, внутри бактериальной клетки образуется только одна спора.

Основная функция спор — сохранение бактерий в неблагоприятных условиях внешней среды. Переход бактерий к спорообразованию наблюдается при истощении питательного субстрата, недостатке углерода, азота, фосфора, накоплении в среде катионов калия и марганца, изменении рН, повышении содержания кислорода и т. д.

От вегетативных клеток споры отличаются репрессией генома, почти полным отсутствием обмена веществ (анабиозом), малым количеством свободной воды в цитоплазме, повышением в ней концентрации катионов кальция и появлением дипиколиновой (пиридин-2,6-дикарбоновой) кислоты в виде Са-хелата, с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость.

В световом микроскопе споры имеют вид овальных, иногда округлых, сильно преломляющих свет образований размером 0,8 — 1,0, 1,2— 1,5 мкм; они могут располагаться центрально (В. anthracis), субтерминально — ближе к концу (Cl. botulinum), терминально — на конце палочек (Cl. letani). Строение зрелой споры сложное и однотипное у разных видов бактерий. Центральная ее часть представлена сердцевиной, или спороплазмой, в состав которой входят нуклеиновые кислоты, белки и дипиколиновая кислота. Она содержит нуклеоид, рибосомы и нечетко выраженные мембранные структуры. Спороплазма окружена цитоплазматической мембраной, к ней прилегает зачаточный пептидогликановый слой, затем располагается специфический для спор массивный слой кортекса, или коры. На поверхности кортекса имеется внешняя мембрана. Снаружи спора одета многослойной оболочкой. У многих бактерий по окружности наружного слоя споровой оболочки располагается экзоспориум.

Спорообразование (споруляция) — один из сложнейших процессов дифференцировки бактериальной клетки, который контролируется комплексом специальных генов — спорулоном. У многих бацилл во время образования спор синтезируются полипептидные антибиотики, подавляющие рост вегетативных клеток.

Процесс образования спор проходит ряд последовательных стадий:

— подготовительная. Изменяется метаболизм, завершается репликация ДНК, и происходит се конденсация. Клетка содержит два или более нуклеоида, один из них локализуется в спорогенной зоне, остальные — в цитоплазме спорангия. Одновременно синтезируется дипиколиновая кислота;

— стадия предспоры. Со стороны цитоплазматической мембраны вегетативной клетки происходит врастание двойной мембраны, или септы, отделяющей нуклеоид с участком уплотненной цитоплазмы (спорогенная зона). В результате чего образуется проспора, окруженная двумя мембранами;

— образование оболочек. Вначале между мембранами проспоры образуется зачаточный пептидогликановый слой, затем над ним откладывается толстый пептидогликановый слой кортекса и вокруг его наружной мембраны формируется споровая оболочка;

— созревание споры. Заканчивается образование всех структур споры, она становится термоустойчивой, приобретает характерную форму и занимает определенное положение в клетке.

При попадании в благоприятные условия споры прорастают в вегетативные клетки. Этот процесс начинается с поглощения воды и гидратации структур споры. Одновременно активизируются ферменты и резко возрастает энергия дыхания. Литические ферменты разрушают покровы споры и пептидогликан кортекса, выделяются наружу дипиколиновая кислота и соли кальция. На месте разрыва оболочки споры возникает ростовая трубка и формируется вегетативная клетка. Прорастание спор длится около 4—5 ч.

Споры бактерий устойчивы к действию высоких температур, химических соединений, в том числе органических растворителей и поверхностно-активных веществ; могут длительное время (десятки, сотни лет) существовать в покоящемся состоянии.

www.allvet.ru

Технология выживания спорообразующих бактерий

Образование организмами клеток – спор в плотной оболочке – явление, которое встречается в живой природе не очень часто. На самом деле – единожды, и только у бактерий. Хоть и есть еще один природный процесс формирования спор, но, несмотря на схожесть биологических наименований, это два совершенно разных вида живых образований. Один вид формируют спорообразующие бактерии, другой – растения и грибы.