Квадратный корень все правила

ОБОЙДИ УЖЕ ЭТИ ГРАБЛИ! 🙂

Формулы корней. Свойства квадратных корней. Продолжение.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Продолжаем развлечение? В предыдущих уроках мы осознали, что такое квадратный корень. И разобрались как умножать корни. Формулу умножения корней мы разобрали по винтикам. Очень уж она полезная в решении примеров! Осталось ещё две. Переходим к следующей формуле. Это будет деление корней.

Формула столь же проста, как и умножение. Вот она:

Напоминаю: здесь а — неотрицательное число (больше или равно нулю), b — положительное (больше нуля)! Иначе формула смысла не имеет. Об этих тонкостях мы ниже поговорим.

У формулы деления корней возможности не так обширны, как у умножения. Что можно делать прямо по формуле? Очевидно, делить корни.

Как делить корни?

Элементарно. Вот вам примерчик:

В этом примере деление корней помогло нам получить хороший ответ. Бывают более хитрые преобразования. Например:

Здесь мы превратили двойку в корень квадратный из четырёх. Исключительно для того, чтобы формулу деления корней в дело употребить. Как видите, ничего здесь сложного нет.

Рассмотрим формулу деления корней в обратном направлении. Справа налево. Вот так:

Какие возможности раскрывает нам такая запись? Ничего нового, думаете? Ошибаетесь! Забавно, но простая запись формулы в другом направлении частенько высвечивает дополнительные возможности!

В нашем случае такая формулировка деления корней здорово помогает извлекать корни из дробей! Например, пусть нам надо извлечь квадратный корень из дроби 25/144. Спокойно пишем себе:

Вот и все дела! От работы с дробью целиком, мы переходим к работе отдельно с числителем, отдельно со знаменателем. Что гораздо проще. А если дробь десятичная? Не вопрос! Если сразу корень не можете извлечь — переводите десятичную дробь в обыкновенную, и — вперёд! По формуле деления корней. Например:

Бывает ещё круче, когда корень из смешанного числа надо извлечь! Как поступаем? Правильно! Переводим смешанное число в неправильную дробь — и по знакомой формуле деления корней! К примеру, вот так:

Что, забыли, как переводить дроби? Срочно двигайте в тему «Дроби» и вспоминайте. А то ни дробь преобразовать, ни сократить её. И зачем вам тогда квадратные корни?

Надеюсь, что деление корней проблем не составляет. Простая и безобидная формула, простое употребление. Теперь в нашем арсенале уже две формулы. Умножение и деление корней. Табурет на двух ножках. Сидеть можно, но. некомфортно.)

Займёмся последним свойством квадратных корней. Здесь уже будут некоторые тонкости и подводные камни. Это свойство кратко называют корень из квадрата. Или корень в квадрате. Или корень из степени. Корень в степени. Всяко называют. Но суть одна. Это возведение в степень подкоренного выражения или самого корня.

Можно ли корень возвести в квадрат? А почему нет? Умножить корень сам на себя — да все дела! И не только в квадрат можно. В любую степень. А извлечь корень из квадрата? Да тоже не проблема! Мы же умеем корень из произведения извлекать. Так что можно извлечь корень не только из квадрата, но и из любой степени.

Но именно эти действия вызывают массу проблем. С этим надо разобраться основательно. Что мы сейчас и сделаем. Начнём с безобидного действия. С корня в квадрате.

Как возвести корень в квадрат?

Так как посчитать корень в квадрате? Очень просто. Прямо по смыслу корня. Что такое корень квадратный из двух, например? Это число, которое при возведении в квадрат должно дать двойку. Так вот, если мы число, которое при возведении в квадрат должно дать двойку, возведём-таки в этот самый квадрат? Что получим? Двойку, конечно! Т.е. подкоренное выражение. Или, в общем виде:

Вот и всё! Никаких подводных камней, всё строго по формуле! Возведение в квадрат корня квадратного из любого выражения даст нам это самое выражение. Понятно, что а — число неотрицательное. Иначе формула смысла не имеет.

А если корень не в квадрате, а в другой степени? Не вопрос! Если, конечно, знаете действия со степенями. По правилам этих действий сами приведём исходное выражение к корням в квадрате и всё посчитаем. Например, вот так (расписываю подробно):

Как видим, корень исчезает, Степень результата в два раза меньше исходной степени.

Если степень нечётная — разложим исходное выражение на множители, и все дела:

Так поступаем с любой степенью корня из любого выражения, и всё у нас посчитается, упростится и получится. Корень в квадрате — штука бесхитростная. Разберёмся теперь с корнем из квадрата.

Как извлечь корень из квадрата?

Пусть у нас есть хорошее число 2. Возведём его в квадрат.

Кто бы спорил? А теперь давайте обратно, извлечём из результата квадратный корень:

Опять всё чудесно, правда? С чего начали, к тому и вернулись! Стало быть, можно записать:

Оно и естественно, правда? Возведение в квадрат компенсируется обратной операцией — извлечением квадратного корня. В общем виде формула выглядит вот так:

Стоп! Внимание! Во всех учебниках, справочниках и пособиях рядом с такой формулой всегда пишут: «где а — больше, либо равно нулю». В этих словах, которые многие просто пропускают, и кроются главные сложности корней. Потому, что в примерах а частенько бывает отрицательным! Пока и мы будем считать, что а — неотрицательное. Для простоты. А вот как встретите на этой странице мрачного зайца — вот там и начнётся настоящая работа!

Продолжаем. Корень из квадрата извлекается просто. А если у нас подкоренное выражение не в квадрате, а в другой степени? Допустим, в четвёртой? Да нет проблем. Приведём нашу степень к квадрату. Вот так:

Для таких преобразований надо опять-таки знать действия со степенями, но тут уж ничего не поделаешь.

Теперь по формуле корня из квадрата:

Вот и всё. Корень из любой чётной степени даст в результате подкоренное выражение в степени, в два раза меньше исходной. Корень из 3 10 ? Легко! Это будет 3 5 . Корень из 5 18 ? Запросто! Это будет 5 9 . Ну, и так далее.

А если степень нечётная? Подумаешь! Раскладываем подкоренное выражение на множители — и вперёд! Используем вынесение множителя из-под корня. Например:

Всё просто. Но до сего момента мы работали только с неотрицательными числами и выражениями. Как только в игру вступают отрицательные величины, простота куда-то пропадает начисто. Вернём эту простоту и ясное понимание.

Вот тут и будет мрачный заяц. Для лучшего запоминания.) Концентрируем внимание и собираем весь интеллект в кулак!)

Итак, откуда в корнях могут появиться отрицательные числа и выражения?

Пунктик первый. Отрицательные значения даны прямо в задании. Вспоминаем пример корня из квадрата двойки:

Здесь всё понятно и просто.

А теперь попробуем вычислить:

Берём, и просто считаем, безо всяких формул:

Извлекаем корень из четырёх и получаем 2. Так как арифметический квадратный корень (а в школе мы работаем только с такими!) — всегда число неотрицательное! То есть:

А если бы мы использовали формулу:

получили бы не два, а минус два! Что является ошибкой.

Не работает эта формула для отрицательных значений.

Для того, чтобы формула корня из квадрата работала для всех значений а, она записывается вот так:

Это и есть последнее, третье свойство корней. Корень из квадрата. Третья ножка для табурета.)

Здесь появляется страшный значок для старшеклассников. Модуль. Если вы пока не сильны в раскрытии модулей, не волнуйтесь. Здесь он означает лишь то, что при любом знаке а, результат извлечения корня из квадрата будет всегда неотрицательный. Формула стала полноценной. Модуль просто отсекает минусы:

Пунктик второй. Отрицательные значения спрятаны в буквах и дополнительных условиях. Например, требуется упростить выражение:

Не выходит? Смотрим ЗАКЛЮЧЕНИЕ урока.

Получилось? Неплохо. А как вам эти примерчики?

Вычислить (все буквы — неотрицательные):

Ответы (в беспорядке): выражение не имеет смысла; 5; 4; 1; -3; 0,5

Всё нормально!? Отлично. Корни — не ваша проблема.

Не всё понятно? Не беда. Читаем дальше.

Не получаются даже простые примеры? Или не очень простые? Хотелось бы увидеть решение всех примеров с подробными и понятными объяснениями? Нет проблем! Идём в Особый раздел 555. Квадратные корни. Там даны все разъяснения. Которые, между прочим, годятся не только для решения этих примеров.

Это и будет последняя, четвёртая ножка для табурета.) Которая не даст свалиться и при серьёзных заданиях.

Особо ценная информация Раздела 555 помогает даже в самых запущенных случаях!) Когда не получается — и всё тут! Не говоря уж об отдельных неясностях. В этом разделе вы познакомитесь с практической работой с корнями.

И всё получится.

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

egesdam.ru

Квадратный корень все правила

Свойства квадратных корней

До сих пор мы осуществляли над числами пять арифметических операций: сложение, вычитание, умножение, деление и возведение в степень, причем при вычислениях активно использовали различные свойства этих операций, например а + b = b + а, а n -b n = (аb) n и т.д.

В этой главе введена новая операция — извлечение квадратного корня из неотрицательного числа. Чтобы успешно ее использовать, нужно познакомиться со свойствами этой операции, что мы и сделаем в настоящем параграфе.

Доказательство. Введем следующие обозначения:
Нам надо доказать, что для неотрицательных чисел х, у, z выполняется равенство х = yz.

Итак, х 2 = ab, у 2 = а, z 2 = b. Тогда х 2 = y 2 z 2 , т. е. х 2 = (yz) 2 .

Если квадраты двух неотрицательных чисел равны, то и сами числа равны, значит, из равенства х 2 = (yz) 2 следует, что х = yz, а это и требовалось доказать.

Приведем краткую запись доказательства теоремы:

Замечание 1. Теорема остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух не отрицательных множителей.

Замечание 2. Теорему 1 можно оформить, используя конструкцию «если. , то» (как это принято для теорем в математике). Приведем соответствующую формулировку: если а и b — неотрицательные числа, то справедливо равенство .

Следующую теорему мы именно так и оформим.

(Краткая формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней или корень из частного равен частному от корней.)

На этот раз мы приведем только краткую запись доказательства, а вы попробуйте сделать соответствующие комментарии, аналогичные тем, что составили суть доказательства теоремы 1.

Пример 1. Вычислить .
Решение. Воспользовавшись первым свойством квадратных корней (теорема 1), получаем

Замечание 3. Конечно, этот пример можно решить по-другому, особенно если у вас под рукой микрокалькулятор: перемножить числа 36, 64, 9, а затем извлечь квадратный корень из полученного произведения. Однако, согласитесь, предложенное выше решение выглядит более культурно.

Замечание 4. При первом способе мы проводили вычисления «в лоб». Второй способ изящнее:
мы применили формулу а 2 — b 2 = (а — b) (а + b) и воспользовались свойством квадратных корней.

Замечание 5. Некоторые «горячие головы» предлагают иногда такое «решение» примера 3:

Это, конечно, неверно: вы видите — результат получился не такой, как у нас в примере 3. Дело в том, что нет свойства , как нет и свойства Имеются только свойства, касающиеся умножения и деления квадратных корней. Будьте внимательны и осторожны, не принимайте желаемое за действительное.

Пример 4. Вычислить: а)
Решение. Любая формула в алгебре используется не только «справа налево», но и «слева направо». Так, первое свойство квадратных корней означает, что в случае необходимости можно представить в виде , и обратно, что можно заменить выражением То же относится и ко второму свойству квадратных корней. Учитывая это, решим предложенный пример.

Завершая параграф, отметим еще одно достаточно простое и в то же время важное свойство:
если a > 0 и n — натуральное число, то



Пример 5.
Вычислить , не используя таблицу квадратов чисел и микрокалькулятор.

Решение. Разложим подкоренное число на простые множители:



Замечание 6.
Этот пример можно было решить так же, как и аналогичный пример в § 15. Нетрудно догадаться, что в ответе получится «80 с хвостиком», поскольку 80 2 2 . Найдем «хвостик», т. е. последнюю цифру искомого числа. Пока мы знаем, что если корень извлекается, то в ответе может получиться 81, 82, 83, 84, 85, 86, 87, 88 или 89. Проверить надо только два числа: 84 и 86, поскольку только они при возведении в квадрат дадут в результате четырехзначное число, оканчивающееся цифрой 6, т.е. той же цифрой, которой оканчивается число 7056. Имеем 84 2 = 7056 — это то, что нужно. Значит,

Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.

Книги, учебники математике скачать, конспект на помощь учителю и ученикам, учиться онлайн

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

edufuture.biz

Квадратный корень

Квадратные корни из натуральных чисел до 25 включительно. В квадрат со стороною √2 вписана окружность.

Квадра́тный ко́рень из $ \! a $ (корень 2-й степени, $ \sqrt $ ) — это решение уравнения: $ x^2 = a $ . Иначе говоря, квадратный корень из $ \! a $ — число, дающее $ \! a $ при возведении в квадрат. Операция вычисления значения $ \sqrt $ называется «извлечением квадратного корня» из числа $ a $ . Наиболее часто под $ \! x $ и $ \! a $ подразумеваются числа, но в некоторых приложениях они могут быть и другими математическими объектами, например матрицами и операторами.

Пример для вещественных чисел: $ \sqrt<9>=\pm 3, $ потому что $ <(\pm 3)>^2=9. $ У квадратного корня существуют противоположные, т.е. отличающиеся знаком значения (в данном примере, положительное и отрицательное числа), и это затрудняет работу с корнями. Чтобы обеспечить однозначность, вводится понятие арифметического корня, значение которого при $ \! a \geqslant 0 $ всегда неотрицательно (а на положительных $ \! a $ — положительно; в примере это число 3

Квадратный корень из числа $ \! a $ — это такое число, квадрат которого (результат умножения на себя) равен $ \! a $ , то есть решение уравнения $ \! x^2=a $ относительно переменной $ \! x $ . [1] [2]

Содержание

Рациональные числа Править

При натуральных $ \! a $ уравнение $ \! x^2=a $ не всегда разрешимо в рациональных числах. Более того, такое уравнение, даже при положительном $ \! a $ , разрешимо в рациональных числах тогда и только тогда когда и числитель и знаменатель числа $ \! a $ , представленного в виде несократимой дроби, являются квадратными числами.

Непрерывная дробь корня из рационального числа всегда является периодической (возможно с предпериодом) что позволяет с одной стороны легко вычислять хорошие рациональные приближения к наничивает точность приближения: $ |\sqrt-p/q|>\frac<1> $ , где $ \! C $ зависит от [3] [4] . Верно и $ \! r $ то, что любая периодическая цепная дробь является квадратичной иррациональностью.

Действительные (вещественные) числа Править

Теорема. Для любого положительного числа $ a $ существует ровно два вещественных корня, которые равны по модулю и противоположны по знаку. [5]

Неотрицательный квадратный корень из неотрицательного числа $ \! a $ называется арифметическим квадратным корнем и обозначается с использованием знака радикала $ \sqrt a $ [6] .

Комплексные числа Править

Над полем комплексных чисел решений всегда два, отличающихся только знаком (за исключением квадратного корня из нуля).Дичь из комплексного числа $ \! a $ часто обозначают как $ \sqrt $ , однако использовать это обозначение нужно осторожно. Распространённая ошибка:

Для извлечения квадратного корня из комплексного числа удобно использовать экспоненциальную форму записи комплексного числа: если

где корень из модуля понимается в смысле арифметического значения, а k может принимать значения k = 0 и k = 1 , таким образом в итоге в ответе получаются два различных результата.Ты втираешь мне какую то дичь!

Квадратный корень является элементарной функцией и частным случаем степенной функции $ \! x^\alpha $ с $ \! \alpha=1/2 $ . Арифметический квадратный корень является гладким при $ \! x>0 $ , в нуле же он непрерывен справа, но не дифференцируем. [7]

Как функция комплексного переменного корень — двузначная функция, листы которой соединяются в нуле.

Обобщения Править

Квадратные корни вводятся как решения уравнений вида $ x \circ x = a $ и для других объектов: матриц [8] , функций [9] , операторов [10] и т. п. В качестве операции $ \circ $ при этом могут использоваться достаточно произвольные мультипликативные операции, например, суперпозиция.

В алгебре применяется следующее формальное определение: Пусть $ (G,\cdot) $ — группоид и $ a\in G $ . Элемент $ x\in G $ называется квадратным корнем из $ \ a $ если $ \ x \cdot x=a $ .

Квадратный корень в элементарной геометрии Править

Квадратные корни тесно связаны с элементарной геометрией: если дан отрезок длины 1, то с помощью циркуля и линейки можно построить те и только те отрезки, длина которых записывается выражениями, содержащими целые числа, знаки четырёх действий арифметики, квадратные корни и ничего сверх того. [11]

Квадратный корень в информатике Править

Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).

Алгоритмы нахождения квадратного корня Править

Нахождение или вычисление квадратного корня заданного числа называется извлечением (квадратного) корня.

Разложение в ряд Тейлора Править

Арифметическое извлечение квадратного корня Править

Для квадратов чисел верны следующие равенства:

$ 1 = 1^2 $ $ 1 + 3 = 2^2 $ $ 1 + 3 + 5 = 3^2 $ $ \sum^n_<(2k-1)>=n^2 $

То есть, узнать целую часть квадратного корня числа можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и посчитав количество выполненных действий. Например, так:

$ 9-1=8 $ $ 8-3=5 $ $ 5-5=0 $

Выполнено 3 действия, квадратный корень числа 9 равен 3.

Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня.

Если требуется найти квадратный корень с точностью до нескольких знаков после запятой, то этот метод по-прежнему можно использовать, хотя он и становится очень затратным. Исходное число следует дополнить соответствующим количеством пар нулей, а результат потом соответствующее количество раз поделить на 10. Например, для вычисления корня из 2 с точностью до одного знака нужно исходное число дополнить одной парой нулей, получив 200. В процессе извлечения квадратного корня из 200 описанным методом будет произведено 14 действий вычитания, что после однократного деления на 10 даёт результат 1,4. Для получения корня из 2 с точностью до двух знаков (результат 1,41) потребуется фактически извлекать корень из 20000, что потребует уже 141 действия вычитания.

Грубая оценка Править

Многие алгоритмы вычисления квадратных корней из положительного действительного числа S требуют некоторого начального значения. Если начальное значение слишком далеко от настоящего значения корня, вычисления замедляются. Поэтому полезно иметь грубую оценку, которая может быть очень неточна, но легко вычисляется. Если S ≥ 1 , пусть D будет числом цифр S слева от десятичной запятой. Если S Если D нечётно, D = 2n + 1 , тогда используем $ \sqrt \approx 2 \cdot 10^n. $ Если D чётно, D = 2n + 2 , тогда используем $ \sqrt \approx 6 \cdot 10^n. $

Два и шесть используются потому, что $ \sqrt<\sqrt<1 \cdot 10>> = \sqrt[4] <10>\approx 2 \, $ и $ \sqrt<\sqrt<10 \cdot 100>> = \sqrt[4] <1000>\approx 6 \,. $

При работе в двоичной системе (как внутри компьютеров), следует использовать другую оценку $ 2^ <\left\lfloor D/2\right\rfloor>$ (здесь D это число двоичных цифр).

Геометрическое извлечение квадратного корня Править

В частности, если $ \! |AH| = 1 $ , а $ \! |HC| = x $ , то $ |BH|=\sqrt $ [12]

Итерационный аналитический алгоритм Править

тогда $ \lim_x_n = \sqrt $

Столбиком Править

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. Такой способ может быть освоен даже школьником. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Выписывается число, корень которого ищем. Справа от него будем постепенно получать цифры искомого корня. Пусть извлекается корень из числа N с конечным числом знаков после запятой. Для начала мысленно или метками разобьём число N на группы по две цифры слева и справа от десятичной точки. При необходимости, группы дополняются нулями — целая часть дополняется слева, дробная справа. Так 31234,567 можно представить, как 03 12 34, 56 70 . В отличие от деления снос производится такими группами по 2 цифры.

  1. Записать число N (в примере — 69696 ) на листке.
  2. Найти $ a $ , квадрат которого меньше или равен группе старших разрядов числа N (старшая группа — самая левая не равная нулю), а квадрат $ a+1 $ больше группы старших разрядов числа. Записать найденное $ a $ справа от N (это очередная цифра искомого корня). (На первом шаге примера $ a^2=2^2=2 \cdot 2=4 6 $ ).
  3. Записать квадрат $ a $ под старшей группой разрядов. Провести вычитание из старшей группы разрядов N выписанного квадрата числа $ a $ и записать результат вычитания под ними.
  4. Слева от этого результата вычитания провести вертикальную черту и слева от черты записать число равное уже найденным цифрам результата (мы их выписываем справа от N ) умноженное на 20 . Назовём это число $ b $ . (На первом шаге примера это число просто есть $ b=2 \cdot 20=40 $ , на втором $ b=26 \cdot 20=520 $ ).
  5. Произвести снос следующей группы цифр, то есть дописать следующие две цифры числа N справа от результата вычитания. Назовем $ c $ число, полученное соединением результата вычитания и очередной группы из двух цифр. (На первом шаге примера это число $ c=296 $ , на втором $ c=2096 $ ). Если сносится первая группа после десятичной точки числа N , то нужно поставить точку справа от уже найденных цифр искомого корня.
  6. Теперь нужно найти такое $ a $ , что $ (b+a) \cdot a $ меньше или равно $ c $ , но $ (b+(a+1)) \cdot (a+1) $ больше, чем $ c $ . Записать найденное $ a $ справа от N, как очередную цифру искомого корня. Вполне возможно, что $ a $ окажется равным нулю. Это ничего не меняет — записываем 0 справа от уже найденных цифр корня. (На первом шаге примера это число 6 , так как $ (40+6) \cdot 6=46 \cdot 6=276 296 $ ) Если число найденных цифр уже удовлетворяет искомой точности прекращаем процесс вычисления.
  7. Записать число $ (b+a) \cdot a $ под $ c $ . Провести вычитание столбиком числа $ (b+a) \cdot a $ из $ c $ и записать результат вычитания под ними. Перейти к шагу 4.

ru.math.wikia.com